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Drones as Flying Base Stations

m Drone base stations for emergency situations or hotspots

s Can bring high capacity in temporary events: Olympic games
= Project examples: Ericsson and Qualcomm, AT&T, and ABSOLUTE

s Advantages
= Adjustable altitude

= On-demand connectivity

= Low infrastructure low cost

= Low altitude vs high altitude
Nokia’s Drone base stations



Drones as Wireless Users

s Drones will require connectivity to enable applications
such as delivery, rescue missions, and flying cars
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Challenges

Channel modeling Deployment and path

planning

Performance

Standards Resource

management

‘oo

Network modeling Security and privacy

Signaling

m Let’s pose a more fundamental question: Can we build fully-
fledged standalone 3D wireless networks with drones?



System Model

s 3D aerial network: & i

= Drone-users (drone-UEs)
Backhaul link
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f Drone-BS

<% Drone-UE
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Drone-UEs

= Drone base stations (drone-BSs)

s HAP drones for wireless backhaul

s Important metrics:
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= Connectivity
= Latency
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= Two key problems:

= 3D network planning of drone-B>s
= Deployment and frequency planning
= 3D cell association for drone-UEs 5



Proposed Framework

Drone-BSs’ locations
3D deployment of drone-BSs and co-channel cells

and frequency planning:
truncated octahedron cells |

Optimal 3D cell association for
minimum latency of drone-UEs
using optimal transport theory

Estimating the spatial T
distribution of drone-UEs using ——
machine learning tools 3D spatial distribution
of drone-UEs




Network Planning of Drone-BSs

s Inspired by 2D hexagonal cells é

il
i

= Hexagons covers an area without gap or overlap é
= Closest to circle é

= Omni-directional antenna

s How about in 3D?

= More dimensions (3D, more adjacent cells, etc.)

Criteria:

= Full coverage with minimum number of drones

= Closest shape to a sphere
= Tractable

= Candidates for regular 3D shapes: Cube, Hexagonal prism, Rhombic
dodecahedron, Truncated octahedron .




Results: Network Planning

s Number of drone-BSs needed for full coverage of space

» Different space filling polyhedra

Number of required drone-BSs (normalized)
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Cube

Hexagonal prism Rhombic dodecahedron Truncated octahedron

Polyhedra




i 3D Network Planning of Drone-BSs

= Truncated octahedron structure will provide an 1nitial
way to place drone-BSs
s Placing drone-BSs at centers of truncated octahedrons

14 faces:
8 hexagons
6 squares
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Deployment and Frequency Planning

m Theorem 1. the three-dimensional locations of drone-BSs

arc.
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where a, b, c are integers chosen from set{...,-2,-1,0, 1, 2,...}

s Theorem 2. the feasible integer frequency reuse factors can
be determined by:
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ny, Ny, N3, M;, M,, and my are integers that
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Integer frequency reuse factors: 1, 8, 27,64, 125...
vs 2D case: 1,3,4,7,9, 12,... 10



Latency-Minimal 3D Cell Association

= Latency 1n serving drone-UEs

= Transmission latency ST T T T T T T T T I T T T ITTTT
I Depend on: resources, congestion, :
= Backhaul latency { and 3D cell association !
= Computational latency @~~~ "TTTTTTTTTT T T T
al BK BK
min - x,y, z)dxdydz + © 4 K,)|,
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Drone-UEs’
Transmission distributio Backhaul Computation
Average number of data rate n
independent drone-
UEs i | . Packet length
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V,, B, : Bandwidth

Total number of drone- 3D cell partition
UEs (assumed to be large) [ Challenging to solve ] .




Latency-Minimal 3D Cell Association

» Another representation of the problem:

N

Jmin / c(v, 5,)f(v)dv,
n=1 L
K,
1. dv = —,
st [ f(opdo =

ViV =0, Vi£meN, | JV.=V,
neN

Location of drone-BS N

V= (:L“, Y, Z) Location of arbitrary drone-UE
— BK?’L L /BKn K
C(v’ Sn) By, log, (H%(m,yaz)) i Kn( Cn N gn(ﬁ n))

s 3D cell partitions:
= How to assign drone-UEs to drone-BSs in a continuous 3D space?

= We need to go back 300 years... 12



iApproach: Optimal Transport Theory

Moving items from a source to destination with minimum cost

SUPPLY DEMAND

A

X
AN

What 1s the best way to move piles of sand to fill up given holes of
the same total volume?

Goal: Minimizing total transportation costs

Where should each pile be moved?
Our problem: transportation from drone-BSs to drone-UEs!

13



Monge-Kantorovich Transport Problem

= Given two probability distributions i, v
w: initial distribution
v: final disribution
Can be discrete or continuous

s Same amount of mass in source and destination

= What is the optimal mapping between p and v ?

T:x—y 4
y = T(z) Yy Vo'V |

X

c(x,y): transportation cost of moving = to y

inf /X c(z,T(z))pu(zr)dz

T
14



Solution Characterization

m Using tools from optimal transport theory
= Finds optimal mapping between two probability measures

= Considering a semi-discrete optimal transport problem
»« Mapping drone-UEs’ distribution (continuous) to drone-BSs (discrete)

»« Optimal 3D cell partitions are related to optimal transport maps

Cost function (i.e., latency)

min/c(v,s)f(v)dv, s =T(v) _/--/"/“/:%‘ \'%\\
T Jy ks : y N

e — -_—

{T('v) = an]lvn('v); s f(v)dv = A

s | determines which drone-BS associated with which 3D point

» Optimal solution characterized given existence of an OT map
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Solution Characterization

Theorem 3: the optimal 3D cell partitions are characterized by:
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Note: 3D cell shapes depend on:
- Drone-UES’ distribution, drone-BSs’ locations, backhaul rate,
computational speed
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Results: 3D Cell Association

m Proposed approach vs. SINR-based association

= Reduces latency

= Improves spectral efficiency
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Results: Accuracy-Optimality

m There 1s a natural tradeoff between accuracy of machine

learning estimation and optimality of cell association
16 . 1 .
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» Smaller period of estimation better accuracy, less deviation
from optimality but more overhead for estimation



Results: Latency

m Latency increases by increasing packet size

50

= Transmission ~ & - Backhaul latency
-+ P+ Computational latency : A2
[ | Computation 40| —&— Transmission latency | .= ol |
= Backhaul % 2
B
c
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sM. Mozaffari, A. Taleb Zadeh Kasgari, Walid Saad, —

Mehdi Bennis, Merouane Debbah, “Beyond 5G with
UAVs: Foundations of a 3D Wireless Cellular Network”, ‘
IEEE Trans. on Wireless Communications, vol. 18, no. 1, ob bbb bbb .

pp. 357-372, January 2019. 2 4 6 8 10

Packet size for each drone-UE (kb)

s What 1if we want to look at the actual movement of the drones?

-
. ©

= Design of the trajectory becomes more complex than what 1s done 1n the
traditional control literature (will look at 2D)

= A key role for learning, let’s see an example
19



‘L System Model

-
-------

.
[ ]
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~——* Drone trajectory &  Active user

. C .
X¢C Dronebasestation /5  Inactive user

Service area

m N fixed-wing drone base stations (DBSs) serving uplink users
whose activity and transmission patterns are unknown

= How can we design the trajectories of the drones in a coordinated
way while also taking into account unknowns?



Formal Problem Statement

s Formally a coverage maximization team game
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Trajectory

And feasibility
constraints

s The problem is non-convex with unknown environments

s Reinforcement learning is a natural solution but..

= Scalability is needed for cooperation between drones

= We need to build “cumulative knowledge”



Meta-Trained Distributed Value
Decomposition Reinforcement Learning

m  We build a novel meta-RL framework that merges the advantages of value
decomposition, policy gradient, and meta-learning

m  Decompose to reduce complexity, meta-train to improve generalizability

New task

et
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Simulation Results
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¢ Simulation Results
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m Proposed approach achieves a higher rate compared to all prior

algorithms

m Other topics for drones? H



New Use Case: Drones as Flying
Intelligent Reflectors

m We were the first to propose the use of a drone as a flying intelligent
reflector

= Flexibility and agility, particularly to avoid blockage at high frequencies

= Average data rate of the BSIR-UE link
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m Q. Zhang, W. Saad, and M. Bennis, "Reflections in the Sky: Millimeter Wave Communication with UAV-Carried
Intelligent Reflectors", in Proc. of the IEEE Global Communications Conference (GLOBECOM), Next-Generation

Networking and Internet Symposium, Waikoloa, HI, USA, December 2019.
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Joint Communications, Learning,

and Control

m Federated learning for communications and control in the sky

with drone swarms

\
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‘L Integrated Access - Backhaul

\? |
. LEO satellite . R
S ~saemenoeas | @ JOINt resource allocation across

Macrocell backhaul
Macrocell

TR access and backhaul with LEO
))base station

e s Market-based approach
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(4 a = Y. Hu, M. Chen, and W. Saad, "Joint Access and
Backhaul Resource Management in Satellite-Drone
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i Other research areas

ARTIFICIAL A
INTELLIGENCE

m Connected drones and

5G/6G/IoT systems = Al-enabled XR autonomous vehicles
= Joint sensing and comm = User experience = Distributed control
= Reliable/low latency = Al for wireless AR/VR Wireless connectivity
= Terahertz/RIS = Holography = CPS Security
= Semantic communications = Digital twins

m Reliable, generalizable, distributed learning

= Meta-learning, curriculum learning, and training-free

' learning
MACHINE LEARNING

= Green, distributed Al (precision vs energy vs accuracy)

= Continual, lifelong learning (brain-like)

= Multi-agent coordination and comm. 28



Other research areas

SMART CITY

Age A(t) at receiver

n

] ) quantum computing
m  Age of information

= Age of information in - Quantum Computing - Smart cities
massive systems = Design of quantum networks  *® B_lg datfl fgr srpart

= Information management = New quantum learning city optimization

= Also links to semantic paradigms = Air pollution
information = Optimization challenges = Security

s Game theory

= Foundations and behavioral game theory (bounded rationality)

= Applications to Al, CPS, security, policy, wireless, water
networks, etc. 29




Conclusions

uture networks will inevitably be 3D, but the
fundamental question remains on whether this will be a
“mere feature” or a fully-fledged network design

Drones are clearly disruptive to wireless networks

= Need for new communication and control paradigms
Confluence of four key enablers: communications,
control, Al, and security

= These fields are now convergent, and no longer distinct
Towards flying cities?

= Human meets machine meets data, for the well-being of
humans (at least we hope so ©)!

30
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‘_L Finally....

Thank You
Questions?

Communications




