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 Drone base stations for emergency situations or hotspots
 Can bring high capacity in temporary events: Olympic games

 Project examples: Ericsson and Qualcomm, AT&T, and ABSOLUTE

 Advantages
 Adjustable altitude
 On-demand connectivity
 Low infrastructure low cost 
 Low altitude vs high altitude
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Drones as Flying Base Stations

Global connectivity

Nokia’s Drone base stations



Drones as Wireless Users

 Drones will require connectivity to enable applications 
such as delivery, rescue missions, and flying cars
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Challenges

 Let’s pose a more fundamental question: Can we build fully-
fledged standalone 3D wireless networks with drones? 

Channel modeling Deployment and path 
planning

Resource 
management

Performance

Standards 

Network modeling Security and privacy

Signaling



System Model
 3D aerial network:
 Drone-users (drone-UEs)
 Drone base stations (drone-BSs)
 HAP drones for wireless backhaul

 Important metrics:
 Connectivity
 Latency

 Two key problems:
 3D network planning of drone-BSs

 Deployment and frequency planning 
 3D cell association for drone-UEs 5



Proposed Framework
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3D deployment of drone-BSs 
and frequency planning: 

truncated octahedron cells

Estimating the spatial 
distribution of drone-UEs using 

machine learning tools

Optimal 3D cell association for
minimum latency of drone-UEs 
using optimal transport theory

Drone-BSs’ locations
and co-channel cells

3D spatial distribution
of drone-UEs



Network Planning of Drone-BSs
 Inspired by 2D hexagonal cells
 Hexagons covers an area without gap or overlap
 Closest to circle

 Omni-directional antenna

 How about in 3D?
 More dimensions (3D, more adjacent cells, etc.)

Criteria:
 Full coverage with minimum number of drones 
 Closest shape to a sphere
 Tractable
 Candidates for regular 3D shapes: Cube, Hexagonal prism, Rhombic 

dodecahedron, Truncated octahedron 7



Results: Network Planning 
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 Number of drone-BSs needed for full coverage of space
 Different space filling polyhedra



3D Network Planning of Drone-BSs
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 Truncated octahedron structure will provide an initial 
way to place drone-BSs
 Placing drone-BSs at centers of truncated octahedrons 

14 faces:
8 hexagons
6 squares



Deployment and Frequency Planning 
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 Theorem 1. the three-dimensional locations of drone-BSs 
are:

 Theorem 2. the feasible integer frequency reuse factors can 
be determined by:

where a, b, c are integers chosen from set {…,-2,-1, 0, 1, 2,…}

n1, n2, n3, m1, m2, and m3 are integers that
satisfy above equations

Integer frequency reuse factors: 1, 8, 27,64, 125…
vs 2D case: 1, 3, 4, 7, 9, 12,…



Latency-Minimal 3D Cell Association
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 Latency in serving drone-UEs
 Transmission latency
 Backhaul latency
 Computational latency

Depend on: resources, congestion, 
and 3D cell association

Transmission
data rate

Backhaul Computation
Average number of 
independent drone-

UEs in cell n

3D cell partition 

Drone-UEs’ 
distributio

n

Packet length

Bandwidth

Total number of drone-
UEs (assumed to be large) Challenging to solve



Latency-Minimal 3D Cell Association
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 Another representation of the problem:

 3D cell partitions:
 How to assign drone-UEs to drone-BSs in a continuous 3D space?
 We need to go back 300 years…

Location of drone-BS n
Location of arbitrary drone-UE



Approach: Optimal Transport Theory
 Moving items from a source to destination with minimum cost

 What is the best way to move piles of sand to fill up given holes of
the same total volume?

 Goal: Minimizing total transportation costs
 Where should each pile be moved?
 Our problem: transportation from drone-BSs to drone-UEs!
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Monge-Kantorovich Transport Problem

 Given two probability distributions

 Same amount of mass in source and destination
 What is the optimal mapping between ?
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Solution Characterization 
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 Using tools from optimal transport theory
 Finds optimal mapping between two probability measures 
 Considering a semi-discrete optimal transport problem

 Mapping drone-UEs’ distribution (continuous) to drone-BSs (discrete)
 Optimal 3D cell partitions are related to optimal transport maps

 T determines which drone-BS associated with which 3D point
 Optimal solution characterized given existence of an OT map

Cost function (i.e., latency)

??



Solution Characterization 
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Theorem 3: the optimal 3D cell partitions are characterized by:

Note: 3D cell shapes depend on:  
- Drone-UEs’ distribution, drone-BSs’ locations, backhaul rate,  

computational speed 



Results: 3D Cell Association 
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 Proposed approach vs. SINR-based association 
 Reduces latency
 Improves spectral efficiency 



Results: Accuracy-Optimality
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 There is a natural tradeoff between accuracy of machine 
learning estimation and optimality of cell  association

 Smaller period of estimation better accuracy, less deviation
from optimality but more overhead for estimation



Results: Latency
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 Latency increases by increasing packet size
 Transmission 
 Computation
 Backhaul

M. Mozaffari, A. Taleb Zadeh Kasgari, Walid Saad, 
Mehdi Bennis, Merouane Debbah, “Beyond 5G with 
UAVs: Foundations of a 3D Wireless Cellular Network”,
IEEE Trans. on Wireless Communications,  vol. 18, no. 1, 
pp. 357–372, January 2019. 

 What if we want to look at the actual movement of the drones?
 Design of the trajectory becomes more complex than what is done in the 
traditional control literature (will look at 2D)
 A key role for learning, let’s see an example



System Model

 N fixed-wing drone base stations (DBSs) serving uplink users 
whose activity and transmission patterns are unknown

 How can we design the trajectories of the drones in a coordinated 
way while also taking into account unknowns? 20



 Formally a coverage maximization team game

 The problem is non-convex with unknown environments
 Reinforcement learning is a natural solution but..

 Scalability is needed for cooperation between drones
 We need to build “cumulative knowledge”

Formal Problem Statement
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Successful service rate 
(team utility)

Trajectory
And feasibility 

constraints
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Meta-Trained Distributed Value 
Decomposition Reinforcement Learning

 We build a novel meta-RL framework that merges the advantages of value 
decomposition, policy gradient, and meta-learning

 Decompose to reduce complexity, meta-train to improve generalizability
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Simulation Results

 Proposed approach significantly faster than all prior 
algorithms, including our own without meta-training
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Simulation Results

 Proposed approach achieves a higher rate compared to  all prior 
algorithms 

 Other topics for drones?

 Y. Hu, M. Chen, W. Saad, H. V. Poor, 
and S. Cui, "Distributed Multi-agent
Meta Learning for Trajectory Design 
in Wireless Drone Networks", IEEE 
Journal on Selected Areas in 
Communications (JSAC), Special 
Issue on UAV Communications in 5G
and Beyond Networks, to appear, 
2021.



New Use Case: Drones as Flying 
Intelligent Reflectors

 We were the first to propose the use of a drone as a flying intelligent
reflector
 Flexibility and agility, particularly to avoid blockage at high frequencies

 Q. Zhang, W. Saad, and M. Bennis, "Reflections in the Sky: Millimeter Wave Communication with UAV-Carried
Intelligent Reflectors", in Proc. of the IEEE Global Communications Conference (GLOBECOM), Next-Generation
Networking and Internet Symposium, Waikoloa, HI, USA, December 2019.

25



Joint Communications, Learning, 
and Control

 Federated learning for communications and control in the sky
with drone swarms
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 Co-design of systems



Integrated Access - Backhaul
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 Joint resource allocation across 
access and backhaul with LEO

 Market-based approach
 Y. Hu, M. Chen, and W. Saad, "Joint Access and 

Backhaul Resource Management in Satellite-Drone 
Networks: A Competitive Market Approach", IEEE 
Transactions on Wireless Communications, 2020.



Other research areas

28

 Reliable, generalizable, distributed learning
 Meta-learning, curriculum learning, and training-free 

learning
 Green, distributed AI (precision vs energy vs accuracy)
 Continual, lifelong learning (brain-like)
 Multi-agent coordination and comm.

 Connected drones and 
autonomous vehicles
 Distributed control
 Wireless connectivity
 CPS Security

 AI-enabled XR
 User experience
 AI for wireless AR/VR 
 Holography
 Digital twins

 5G/6G/IoT systems
 Joint sensing and comm
 Reliable/low latency
 Terahertz/RIS
 Semantic communications



Other research areas
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 Game theory
 Foundations and behavioral game theory (bounded rationality)
 Applications to AI, CPS, security, policy,  wireless, water 

networks, etc.

 Smart cities 
 Big data for smart 

city optimization
 Air pollution 
 Security

 Quantum computing
 Design of quantum networks
 New quantum learning

paradigms
 Optimization challenges

 Age of information
 Age of information in 

massive systems
 Information management
 Also links to semantic 

information



Conclusions

 Future networks will inevitably be 3D, but the 
fundamental question remains on whether this will be a 
“mere feature” or a fully-fledged network design

 Drones are clearly disruptive to wireless networks
 Need for new communication and control paradigms

 Confluence of four key enablers: communications, 
control, AI, and security
 These fields are now convergent, and no longer distinct

 Towards flying cities?
 Human meets machine meets data, for the well-being of 

humans (at least we hope so )! 30



Finally….

Thank You
Questions?Communications

Autonomy

Control


