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Motivation

> Challenges in current/conventional communication systems
0 Mathematical models versus practical imperfection
U Block structures versus global optimality
0 Complexity and performance of optimization

0 Spectrum efficiency limited by Shannon capacity

> Why deep learning?
U No need for models for data-driven method
0 End-to-end loss optimization for global optimality

U Deep learning enabled end-to-end and semantic communications
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Block Structure or End-to-End
for Conventional Communications

Conventional Communications:
Transmit symbols or bits, following Shannon Limit
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DL in Physical Layer Conventional
Communications

Block-Structured Data-Driven

End-to-End

» Z.-].Qin, H. Ye, G. Y. Li, and B.-H. Juang, “Deep learning in physical layer communications,” IEEE Wireless
Commun., vol. 26, no. 2, pp. 93-98, April 2019.
» H.-T. He, S. Jin, C.-K. Wen, F.-F. Gao, G. Y. Li, and Z.-B. Xu, “Model-driven deep learning for physical layer
communications,” IEEE Wireless Commun, vol. 26, no. 5, pp. 77- 83, Oct. 2019
» H.Ye, G. Y. Li, and B.-H. F. Juang, “Power of deep learning for channel estimation and signal detection in
OFDM systems,” IEEE Wireless Commun. Lett., vol. 7, no. 1, pp. 114 - 117, Feb. 2018.
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From Symbol to Semantic Transmission

® Three Levels of Communications: Shannon and Weaver
» Transmission of symbols (Shannon Paradigm)
following Shannon limit & well-developed near limit
» Semantic exchange of source information
semantic communications (transmission of intelligence)
> Effects of semantic information exchange

® Semantic Communications: Significantly improved efficiency!

| have an Semantic

. = . . - | own a car
automobile Communications

C. E. Shannon and W. Weaver, The Mathematical Theory of Communication. The University of
Illinois Press, 1949.
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Conventional Communications

» Only consider the data recovery accurately
» Information redundancy are removed in entropy-domain

» All information (including useless and irrelevant) are transmitted to the receiver,

part are useless for the target network
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Semantic Communications

> Feature networks and action networks considered
» Information redundancy removed in semantic domain

» Only useful and relevant information transmitted to the receiver

> The features can serve different action networks
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Channel Estimation (CE) and Signal Detection (SD)

Transmitter Receiver
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Channel

> Related works:

O MMSE for channel estimation

0O Neural networks and DL in equalization and decoding
> Challenges:

O Nonlinear distortion and interference
» Innovations:

QO DL for joint channel estimation and symbol detection

0 DL-based method: robust and insensitive to nonlinear distortion and

interference Imperial College 4,
London
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Traditional CE and SD
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DL-based CE and SD
{ Channel win)
Y@ |
h(n) > —_
Online deployment
Offline training
» Input:

received pilot OFDM block + received data OFDM block
» Output: recovered data

H. Ye, G. Y. Li, and B.-H. F. Juang, “Power of deep learning for channel estimation and signal detection in OFDM
systems,” IEEE Wireless Commun. Lett., vol. 7, no. 1, pp. 114 - 117, Feb. 2018.
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DL-based CE and SD: DNN Model Training

» Training DNN to predict transmit data

» Training with received OFDM samples corresponding to pilots and data
> Generating label data under diverse channel conditions

» Optimizing model parameters to minimize L, loss function

1 N
L= ;(X(/o - X(k))?
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Model-Driven DL

U Relying on relatively accurate model

O Exploiting rich domain/expert knowledge
U Easy to train with a small amount of data

O Explainable and predictable neural networks

O Deep unfolding: a popular model-driven approach

H.-T. He, S. Jin, C-K. Wen, F.-F. Gao, G. Y. Li, and Z.-B. Xu, “Model-driven deep learning for physical layer
communications,” IEEE Wireless Commun, vol. 26, no. 5, pp. 77- 83, Oct. 2019.

H.-T. He, C.-K. Wen, S. Jin, and G. Y. Li, “Model-driven deep learning for MIMO detection,” IEEE Trans. Signal
Process., vol. 68, pp. 1702-1715, March 2020.
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Why End-to-End Learning?

Transmitter
X Channel ¥y
p(ylx)

> Architecture:
O Representing both transmitter and receiver by DNNs
O Leaning to encode transmit symbols at transmitter

a Learning to recover transmit symbols at receiver

» Merits:
O Achieving global optimum
0O Universal solution to different channels

0O Beating current state-of-arts
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Channel Agnostic End-to-End Learning

> Related Works:
0 End-to-end communication for AWGN
0 End-to-end communication in OFDM
O End-to-end communication with hardware impairment
» Challenges:
0 Back-propagation of the gradients is blocked by the unknown channel

0 Channel is time-varying
» Approaches:

0 Reinforcement Learning (following references)

0 Conditional Generative Adversarial Net (GAN) (our approach)

« T.O'Shea and J. Hoydis, “An introduction to deep learning for the physical layer,” IEEE Trans. on Cogn. Commun. Netw., vol. 3, no.
4, pp. 563-575, Dec. 2017.

S. Dorner, S. Cammerer, J. Hoydis, S. ten Brink, “Deep learning-based communication over the air”, IEEE J. Select. Topics Signal
Process., vol.12, no. 1, pp. 132-143, Feb. 2018.

* A. Felix, S. Cammerer, S. Dorner, J. Hoydis, and S. ten Brink, “OFDM autoencoder for end-to-end learning of communications
systems,” in Proc. IEEE Int. Workshop Signal Proc. Adv. Wireless Commun.(SPAWC), Jun. 2018.

F. Aoudia, and J. Hoydis. “End-to-end learning of communications systems without a channel model,” arXiv preprint arXiv:
1804.02276
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E2E based on Reinforcement Learning
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» Reinforcement Learning Formation:
0 Agent: transmitter
0O Environment: channel + receiver
O States: source data
O Actions: transmit signals
» Advantage and Disadvantage:
0 Unnecessary for channel modeling
0 Hard for continuous action in reinforcement learning

F. Aoudia, and J. Hoydis. “End-to-end learning of communications systems without a channel model,” arXiv
preprint arXiv: 1804.02276
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E2E based on Conditional GAN

Conditional GAN

Receiver Received
——————————————— data

Source
data

Generator

Transmitter
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signals w
Received
—— Transmit Data Flow pilot signals
<4 — — Gradients Flow

Using CNN to address curse of dimentionity
Conditional GAN: modelling the channel output distribution

Surrogate of real channel when training the transmitter

YV V V V

Received pilots as a part of conditioning for unknown channel

H. Ye, L. Liang, G. Y. Li, and B.-H. F. Juang, “Deep learning based end-to-end wireless communication systems with

GAN as unknown channel,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3133-3143, May 2020.
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Performance for WINNER II Channels

» Similar BER at low SNR 1 e —
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» Better at high SNR 101 4
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E2E without Pilot

'
I
i
i
_____________________ - /" Wireless Channel ;
Y 1 = ' '
o] : © @
. ' 1 s 1 ! .
i | ! H ' ! H
o ! | ol Channel | o
e} ' ! O noise : e
| : i i 7
CI Y - Y S
— —_ L
o ' 'o} ®@—F— |5
¢ 1 1 O ! e P =
I ! E ] /' Channel |
Ol ! ' O i / O Extractor 1
{ol— —Q P9 '
H 1 ) H ! ) H 1
Multiple conv layers O]~} T 1 3 E 9 o :
Embedding,’ < /| Noised Q| i
_____________________ 7 S ! embedding N (@I
I L
=. 9 |
\ !
H. Ye, L. Liang, G. Y. Li, and B.-H. F. Juang, “Deep learning based end-t d wireless
2 2: P 2

\
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
¥

Output

pilots,” IEEE Trans. Cognitive Commun. and Netw., vol. 7, no. 3, pp. 702 — 714, September 2021.
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Example on Semantic Communications

Weaver (Semantic) Channel

Shannon Channel

Channel Channel > >
‘ — % % % > Encode 'T > Decode % % %

Noise
Source

W. Tong and G. Y. Li “Nine critical issues in AI and wireless communications to ensure
successful 6G,” to appear in IEEE Wireless Commun., also at https://arxiv.org/abs/2109.11320,
Aug. 2021.
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Semantic Transceiver

® Transceiver

Background [[ERSSESSEREE—- Semantic Chanhel _ _ _ ]
Knowledge ||
| Channel  |x Y. | Channel
» Receiver I | Encoding (C,) [Bliysical Chanfel | Decoding (€;')
Semantic I
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Transmitter Receiver

» Transmitter
X =Ca(Sp(s)),

® Channels
» Physical channel noise is caused by the physical channel impairment
— AWGN, fading channels...
» Semantic channel noise refers to misunderstanding
— Caused by interpretation error and disturbance in estimated information.

H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled semantic communication
systems,” IEEE Trans. Signal Process. vol. 69, pp. 2663-2675, 2021, Apr. 2021.
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Transceiver Structure

Transformer based semantic communication
» Merge the traditional communication and semantic into DNNs
» Transformer can learn the semantic in text

— e.g., “it” completes pronoun reference “the animal”

The ‘The
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? \_ Channel J !
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88
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Transmitter Receiver too too
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A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, k. Kaiser, and I. Polosukhin,
“Attention is all you need,” in Advances Neural Info. Process. Systems (NIPS’17), Long Beach, CA,
USA. Dec. 2017, pp. 5998-6008.

Imperial College 25
London

25

Loss Function

» Loss function used to train the transceiver

Etotal = ‘CCE(Sa é? «a, 16.7 X 6) - >\‘CMI(X7 Y; T7 «, /8)

> Cross-Entropy: Through reducing the loss value of CE, the network can
learn the syntax, phrase, the meaning of words

Leg(s,§a,08,x,0) =
- Zq (w;)log (p (wi)) + (1 — g (w;)) log (1 — p (w;))

» Mutual Information: maximizing achieved data rate

Lyvi(X,Y;T) = Epe,y [fr] —log (EP(I)p(y) [efT])
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Performance Metrics

® BLEU score

» Compare the difference between words in two sentences

N
. ls
log BLEU = min (1 - ]—S,()) + Z-u” log p,.

s
n=1

- ks isthe length of sentence s, /; is the length of sentence S
- p, is the n-grams score, u, is the weights of n-grams
® Sentence Similarity
> Use siamese network to compute the semantic similarity
Ba (s) Ba(s)"
match (8,8) = —
|Ba (s)[ || Ba (5]

- B, (+) is the BERT model

Sen(‘;elime, s, will be mapped into semantic vector space, B, (s), by BERT
mode

> Similarity is computed by measuring distance between B, (s)and B, (3)
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Simulation Results
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» All deep learning approaches are more competitive in the low SNR regime.
> The tendency in sentence similarity is much closer to human judgment.
- InSNR =12dB, 20% BLEU score = approximate 0 sentence similarity
— People are usually unable to understand the meaning of texts full of errors
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Conclusions

0 For Conventional Communications
*Robust to nonlinear distortion, interference, & frequency selectivity

*Improving performance of iterative detectors and adapt to complicated channels

4 End-to-end Communication Architecture
* Enabling global optimization of transceiver

* Potentially reducing the complexity

0 Semantic Communications
*Significantly improving transmission efficiency

*Future of wireless communications
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