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 Challenges in current/conventional communication systems

 Mathematical models versus practical imperfection

 Block structures versus global optimality

 Complexity and performance of optimization

 Spectrum efficiency limited by Shannon capacity

 Why deep learning?

 No need for models for data-driven method

 End-to-end loss optimization for global optimality

 Deep learning enabled end-to-end and semantic communications

Motivation
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Block Structure or End-to-End 
for Conventional Communications
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Conventional Communications: 
Transmit symbols or bits, following Shannon Limit
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DL in  Physical Layer Conventional 
Communications
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 Z.-J. Qin, H. Ye, G. Y. Li, and B.-H. Juang, “Deep learning in physical layer communications,” IEEE Wireless
Commun., vol. 26, no. 2, pp. 93-98, April 2019.

 H.-T. He, S. Jin, C.-K. Wen, F.-F. Gao, G. Y. Li, and Z.-B. Xu, “Model-driven deep learning for physical layer
communications,” IEEE Wireless Commun, vol. 26, no. 5, pp. 77- 83, Oct. 2019

 H. Ye, G. Y. Li, and B.-H. F. Juang, “Power of deep learning for channel estimation and signal detection in
OFDM systems,” IEEE Wireless Commun. Lett., vol. 7, no. 1, pp. 114 – 117, Feb. 2018.

From Symbol to Semantic Transmission
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 Three Levels of Communications: Shannon and Weaver
 Transmission of symbols (Shannon Paradigm) 

following Shannon limit & well-developed near limit
 Semantic exchange of source information

semantic communications (transmission of intelligence)
 Effects of semantic information exchange 

 Semantic Communications:  Significantly improved efficiency!

C. E. Shannon and W. Weaver, The Mathematical Theory of Communication. The University of 
Illinois Press, 1949.
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Conventional Communications
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 Only consider the data recovery accurately

 Information redundancy are removed in entropy‐domain

 All information (including useless and irrelevant) are transmitted to the receiver, 
part are useless for the target network
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 Feature networks and action networks considered

 Information redundancy removed in semantic domain

 Only useful and relevant information transmitted to the receiver

 The features can serve different action networks
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Channel Estimation (CE) and Signal Detection (SD)
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 Related works:

 MMSE for channel estimation 

 Neural networks and DL in equalization and decoding

 Challenges:

 Nonlinear distortion and interference 

 Innovations: 

 DL for joint channel estimation and symbol detection

 DL-based method: robust and insensitive to nonlinear distortion and 

interference
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Traditional CE and SD
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DL-based CE and SD

 Input: received pilot OFDM block + received data OFDM block
Output: recovered data

H. Ye, G. Y. Li, and B.-H. F. Juang, “Power of deep learning for channel estimation and signal detection in OFDM 
systems,” IEEE Wireless Commun. Lett., vol. 7, no. 1, pp. 114 – 117, Feb. 2018. 
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 Training DNN to predict transmit data

 Training with received OFDM samples corresponding to pilots and data 

 Generating label data under diverse channel conditions 

 Optimizing model parameters to minimize 𝐿ଶ loss function

DL-based CE and SD: DNN Model Training
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 Relying on  relatively accurate model

 Exploiting rich domain/expert knowledge

 Easy to train with a small amount of data

 Explainable and predictable neural networks

 Deep unfolding: a popular model-driven approach

Model-Driven DL 
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H.-T. He, S. Jin, C.-K. Wen, F.-F. Gao, G. Y. Li, and Z.-B. Xu, “Model-driven deep learning for physical layer
communications,” IEEE Wireless Commun, vol. 26, no. 5, pp. 77- 83, Oct. 2019.
H.-T. He, C.-K. Wen, S. Jin, and G. Y. Li, “Model-driven deep learning for MIMO detection,” IEEE Trans. Signal
Process., vol. 68, pp. 1702-1715, March 2020.
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 Architecture:

 Representing both transmitter and receiver by DNNs

 Leaning to encode transmit symbols at transmitter

 Learning to recover transmit symbols at receiver

 Merits:

 Achieving global optimum

 Universal solution to different channels

 Beating current state-of-arts

Why End-to-End Learning?

16

15

16



12/1/2021

 Related Works:
 End-to-end communication for AWGN

 End-to-end communication in  OFDM

 End-to-end communication with hardware impairment

 Challenges:
 Back-propagation of the gradients is blocked by the unknown channel

 Channel is time-varying

 Approaches:
 Reinforcement Learning (following references)

 Conditional Generative Adversarial Net (GAN) (our approach)

Channel Agnostic End-to-End Learning

• T. O’Shea and J. Hoydis, “An introduction to deep learning for the physical layer,” IEEE Trans. on Cogn. Commun. Netw., vol. 3, no.
4, pp. 563-575, Dec. 2017.

• S. Dorner, S. Cammerer, J. Hoydis, S. ten Brink, “Deep learning-based communication over the air”, IEEE J. Select. Topics Signal
Process., vol.12, no. 1, pp. 132-143, Feb. 2018.

• A. Felix, S. Cammerer, S. Dorner, J. Hoydis, and S. ten Brink, “OFDM autoencoder for end-to-end learning of communications
systems,” in Proc. IEEE Int. Workshop Signal Proc. Adv. Wireless Commun.(SPAWC), Jun. 2018.

• F. Aoudia, and J. Hoydis. “End-to-end learning of communications systems without a channel model,” arXiv preprint arXiv:
1804.02276
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 Reinforcement Learning Formation:
 Agent: transmitter

 Environment: channel + receiver

 States: source data

 Actions: transmit signals

 Advantage and Disadvantage:
 Unnecessary for channel modeling

 Hard for continuous action in reinforcement learning

E2E based on Reinforcement Learning

F. Aoudia, and J. Hoydis. “End-to-end learning of communications systems without a channel model,” arXiv
preprint arXiv: 1804.02276
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E2E based on Conditional GAN

 Using CNN to address curse of dimentionity

 Conditional GAN: modelling the channel output distribution

 Surrogate of real channel when training the transmitter

 Received pilots as a part of conditioning for unknown channel

19

H. Ye, L. Liang, G. Y. Li, and B.-H. F. Juang, “Deep learning based end-to-end wireless communication systems with
GAN as unknown channel,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3133-3143, May 2020.

Performance for WINNER II Channels
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 Similar BER at low SNR

 Better at high SNR 
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E2E without Pilot

21

H. Ye, L. Liang, G. Y. Li, and B.-H. F. Juang, “Deep learning based end-to-end wireless communication systems without
pilots,” IEEE Trans. Cognitive Commun. and Netw., vol. 7, no. 3, pp. 702 – 714, September 2021.

Outline

● Overview

● DL-based Conventional Communications

* Block-Wise

* End-to-End

● DL-based Semantic Communications

● Conclusions

22

21

22



12/1/2021

Example on Semantic Communications
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W. Tong and G. Y. Li “Nine critical issues in AI and wireless communications to ensure
successful 6G,” to appear in IEEE Wireless Commun., also at https://arxiv.org/abs/2109.11320,
Aug. 2021.

Semantic Transceiver 

24

 Transceiver

 Transmitter

 Receiver

 Channels

 Physical channel noise is caused by the physical channel impairment

– AWGN, fading channels…

 Semantic channel noise refers to misunderstanding

– Caused by interpretation error  and disturbance in estimated information.

H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled semantic communication 
systems,” IEEE Trans. Signal Process. vol. 69, pp. 2663-2675, 2021, Apr. 2021.

23

24



12/1/2021

Transceiver Structure
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Transformer based semantic communication

 Merge the traditional communication and semantic into DNNs

 Transformer can learn the semantic in text

‒ e.g., “it” completes pronoun reference “the animal”

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, 
“Attention is all you need,” in Advances Neural Info. Process. Systems (NIPS’17), Long Beach, CA, 
USA. Dec. 2017, pp. 5998–6008.

Loss Function
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 Loss function used to train the transceiver

 Cross‐Entropy: Through reducing the loss value of CE, the network can 
learn the syntax, phrase, the meaning of words 

 Mutual Information: maximizing achieved data rate 
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Performance Metrics
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 BLEU score
 Compare the difference between words in two sentences

– is the length of sentence s,        is the length of sentence 
– is the n-grams score,       is the weights of n-grams

 Sentence Similarity
 Use siamese network to compute the semantic similarity 

– is the BERT model
 Sentence, s, will be mapped into semantic vector space,             , by BERT 

model
 Similarity is computed by measuring distance between             and
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Simulation Results
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 All deep learning approaches are more competitive in the low SNR regime. 
 The tendency in sentence similarity is much closer to human judgment.

– In SNR = 12 dB, 20% BLEU score = approximate 0 sentence similarity
– People are usually unable to understand the meaning of texts full of errors
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Conclusions
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 For Conventional Communications

*Robust to nonlinear distortion, interference, & frequency selectivity

*Improving performance of iterative detectors and adapt to complicated channels

 End-to-end Communication Architecture

* Enabling global optimization of transceiver

* Potentially reducing the complexity 

 Semantic Communications

*Significantly improving transmission efficiency

*Future of wireless communications
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