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A 6G VISION

Beyond Moore’s law

General Purpose |

Processors

Domain-Specific
HW Accelerators

6G networks should be able autonomously specialize to a
specific radio environment and application

Key enablers: Software-defined RAN & Machine Learning
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COMMUNICATION SEEN AS AN AUTOENCODER

Autoencoder

)

* Channel is a penality layer (noise, distortions, limited power)
 Jointly optimize transmitter and receiver from
* Universal concept that applies to any channel model & loss function
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https://arxiv.org/abs/1702.00832

WHERE ARE WE TODAY?

v New codes achieving state-of-the-art performance

v New modulation and piloting schemes

v New hardware-friendly & spectrally efficient waveforms
v Neural receivers outperforming traditional methods

[ Not much success for multi-antenna communications yet
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https://arxiv.org/abs/2108.12920
https://arxiv.org/abs/2009.05261
https://arxiv.org/abs/2109.00998
https://arxiv.org/abs/2005.01494

arXiv.org > ¢s > arXiv:2109.00998
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Waveform Learning for Next-Generation Wireless Communication Systems
Faycal Ait Aoudia, Jakob Hoydis

We propose a learning-based method for the joint design of a transmit and receive filter, the constellation geometry and associated bit labeling, as well as a neural network (NN)-based detector. The
average power ratio (PAPR). This allows control of the tradeoff between spectral containment, peak power, and communication rate. Evaluation on an additive white Gaussian noise (AWGN) channel

(RRC), without significant loss of information rate. When considering a 3rd Generation Partnership Project (3GPP) multipath channel, the learned waveform and neural receiver enable competitive ol
method incurs no additional complexity on the transmitter side and might be an attractive tool for waveform design of beyond-5G systems.

Subjects: Information Theory (cs.IT); Machine Learning (cs.LG); Signal Processing (eess.SP)
Cite as: arXiv:2109.00998 [cs.IT]

(or arXiv:2109.00998v1 [cs.IT] for this version)

https://arxiv.org/abs/2109.00998
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MOTIVATION FOR WAVEFORM LEARNING

PAPR (peak to average power ratio)

{ 2
PAPR, = min e, s. t. P( s(2)]

ACLR (adjacent channel leakage ratio)

ACLR =

Lx [EO]

L [Er]

Squared magnitude

PSD [dB]

—10 4

—920 4

—30 -

—40

Dol Ay

T
0

T T T
20 40 60

Time (normalized by sample duration) [s]
B
E, o E,

—— OFDM with 16-QAM

I [ I I I
-1 =05 0 0.5 1
Normalized frequency

7

<A NVIDIA.



MOTIVATION FOR WAVEFORM LEARNING I

Transmitter
>

Receiver

Conventional
waveform

Conventional detector

Learned waveform Neural detector

>

|

I | 3

L Enables Could demodulate any
waveform
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LLRs

Detection

SINGLE-CARRIER SETUP

Sampling

r() = j V(@) o' (t — 2)dz

Mapping

C

grx(')
Receive
filtering

y(t) = jh(T)x(t —7)dt + w(t) w(t) is an uncorrelated Gaussian noise,
i.e, Elw(t)w(t + 1)*] = Nyé(1)

Multi-path Channel
P-1
h(t) = Z a,6(T —1p)
p=0
gtx(') s
Transmit x(1) = Z Snfex (t = 1T)
filtering n=0

NVIDIA.



SINGLE-CARRIER SETUP

@ y(@) = jh(r)x(t —7)dt + w(t) w(t) is an uncorrelated Gaussian noise,

r Sampling | Receive  J i.e, Elw®w(t +1)*] = Ny6(7)
filtering

LLRs

r(t) = J)'(Z) Irxy (t —2z)dz Multi-path Channel Key idea:
P-1 Optimize the transmit and receive
h(t) = Z a,6(t — 1)) filters jointly with the constellation
p=0 shaping, bit labelling, and detector
th9(°) pnk
5 - x(t) = ) SpGexy (t —nT)
XY
Mapping Transmit ; n

filtering
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END-TO-END WAVEFORM LEARNING

Trainable constellation C Dlsc_rl_fgier;glglwee fCiPtaenr? el / <= = = Gradient flow
i ty =1r(mT) = z hiSpm—1 + Wi,
. : - : r Neu.ral LLRs
: S | receiver >
— Ma n > *
PPINS L hy = (Gix.0 * grx,w)(lT - Tp)ap «--=-- QyBnklr) [—-—--
p=0
B winii] = No [ Gy (Oexy (e + )t
Constraining the waveform is challenging: Simulating the channel is challenging:
« Average unit energy  Evaluation of the channel taps and noise correlation

 ACLR require integration.
« PAPR
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IMPLEMENTATION OF TRANSMIT AND RECEIVE FILTERS

To accurately and efficiently implement trainable transmit and receive filters, we use the functions {sinc(Df — s)}.cz, Which form a

D D

basis in the frequency domain for (practical) functions time-limited to (—— —).

S
Geo(N) = JC(B) ) fisinc (Df —5)

s=-S

S
Gy () = ) wgsine (Df = 5)

s=-S

This leads to the time-domain expressions

]2ns
rect( )EHeD

s=-S

Irxyp(t) = —rect( ) 2 oo I2ms,

s=-S

th,O (t) —

o

an

2’2

C (@) is a normalization constant that
ensures the transmit filter has unit energy:

C@0) = !

Dlgiz |th 0 (t) | dt

This implementation of the transmit and receive filters enables
exact and low complexity computation of €(0) and of the
« channel taps

* noise covariance
« ACLR

Details available in our paper.
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IMPLEMENTATION OF THE NEURAL RECEIVER

The neural receiver is implemented by a residual convolutional neural network

- >
s . (o
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N 9
Residual block
; @\ o) —+
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R el CEy Sl Teg e 6
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as a% % %

Neural receiver for the AWGN channel
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LOSS FUNCTION

Our goal is to optimize the set of trainable parameters (0,9, C,y) to maximize the BMD rate

Mutual information between bit , S _ o _
B, and received samples r True posterior distribution on B, Posterior distribution on B, given

given r r approximated by the neural

\ \ / receiver

N
R(6,9,C,y) = 2 z [(Brjc; 716, %, C) — [ Dy (P(Bn 7)1 Qy (BricIT))]

] |\ J
| |

Achievable information rate assuming an Rate loss due to mismatched receiver
ideal receiver

By training on the BMD rate, optimization of the constellation geometry is performed while considering the labelling of each point.

This leads to the joint optimization of the bit labelling and constellation geometry.

NVIDIA.



LOSS FUNCTION

A practically useful observation is that the BMD rate R is closely related to the binary cross-entropy:

['(91 ll), C, Y) =K — R(H, II}' C,]/)

where
M—1N-1K-1
1

N-1K-
L6, %,C,¥) = —%z Z o8z (0 (Buelr)) 1€.0.9] =~y l0g2 (0, (B 1))

=0 n=0 k=0

S
=

Maximizing R is equivalent to minimizing L

R(6,v¢,C,y) is known to be an achievable rate for practical systems that rely on BICM and BMD detection [1,2]

[2] G. Bocherer, “Achievable Rates for Probabilistic Shaping,” preprint arXiv:1707.01134, 2017.

[3] F. Ait Aoudia and J. Hoydis, "End-to-end Learning for OFDM: From Neural Receivers to Pilotless Communication,” in IEEE Transactions on Wireless Communications.
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PROBLEM STATEMENT

er?i/?y L£(6,y,C,y) LLRs 1. Discrete-time channel / Filtering
T «—| Detection [«
subject to r, =r(mT) = z hSm_; + Wy,
l
D/2 ) pP-1
f_D/2|th,9(t)| dt =1 hl = (th,e * g:X,lI))(lT — Tp)ap
p=0
E.-cllcl?] =1 B _Ccf s . )
’ C[l | ] Mapping ' [E[WmeH] = NOJgrx,zp (t)grx,tp(t + lT)dt
x ()] )]
E TT max( ———¢,,0]| =0
t~U(~33) |x |2 v

Training is performed using an augmented Lagrangian based approach.

Details available in our paper.
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R [bit/s/Hz]

RESULTS FOR AWGN CHANNEL
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* Baseline:
¢« 16-QAM

 RRC filter with Blackman window

 Roll-off factors g = {0.0,0.25,0.50,0.75, 1.0}

« E2E Approach:
« ¢, €{0.1,0.2,0.3,0.4,0.5}
¢4, € {—50,—40,—-30,—20}dB

 QObservations:

« Accurate ACLR control possible!

« PAPR constraint incurs the strongest impact on rate
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RESULTS FOR AWGN CHANNEL |
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CAN WE BEAT OFDM WITH CYCLIC PREFIX?

| |
9 , s _e- OFDM
16 < —E2E ¢4 = —20dB
—  3- -2 E2E ¢4 = —30dB
| iy |
L N 10
Tm 2.5 4 8 |
= £ 10—3 Bl
= - e OFDM ACLR = —22.04dB
»~E2E ¢4 = —20dB, ACLR = —20.07dB 107 -
e @ E2E ¢4 = —30dB, ACLR = —30.09dB
| | [ I I T I [ I| 10_5 | | |
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SNR [dB] p(t

« 3GPP 38.901 UMi line-of-sight (LoS) and non-line-of-sight (NLoS) channel models are considered

« Training and evaluation were performed on two separate datasets

« Baseline is Gray labelled 16QAM with OFDM waveform, with 166 subcarriers, 30 kHz subcarrier spacing, and a 5G NR pilot pattern
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THE NEED FOR INTERDISCIPLINARY RESEARCH

Fli(r

Fully convolutional residual networks Dilated separable convolutions

* Finding the right neural network architectures is key for:
= Optimal performance
= Low complexity and energy consumption

= Unprecedented throughput & latency requirements
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FUTURE CHALLENGES AND DIRECTIONS

= Paradigm change in communication systems design
Is research mature enough & industry ready?

= Energy efficiency
Are fully learned solutions competitive?

= Standardization
Learning outcome or procedures & signaling?

= Trust & Reliability
How do we test & trouble-shoot fully learned systems?

= New applications and use-cases:

THz frequencies
Joint communication & sensing
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