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RECENT PROGRESS IN END-TO-END LEARNING 
FOR THE PHYSICAL LAYER 
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Problem positioning A 6G VISION

6G networks should be able autonomously specialize to a 
specific radio environment and application

Key enablers: Software-defined RAN & Machine Learning

General Purpose
Processors 

Domain-Specific
HW Accelerators

Beyond Moore’s law

5G/Wi-Fi 6G
Beyond Cooper’s law
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ReceiverTransmitter Channel𝑏 "𝑏

Autoencoder

• Channel is a penality layer (noise, distortions, limited power)

• Jointly optimize transmitter and receiver from “end-to-end”

• Universal concept that applies to any channel model & loss function

𝑥 𝑦

COMMUNICATION SEEN AS AN AUTOENCODER

https://arxiv.org/abs/1702.00832

https://arxiv.org/abs/1702.00832


The entire physical layer can be learned! 

ü New codes achieving state-of-the-art performance  
https://arxiv.org/abs/2108.12920

ü New modulation and piloting schemes
https://arxiv.org/abs/2009.05261

ü New hardware-friendly & spectrally efficient waveforms
https://arxiv.org/abs/2109.00998

ü Neural receivers outperforming traditional methods
https://arxiv.org/abs/2005.01494

q Not much success for multi-antenna communications yet

WHERE ARE WE TODAY?

https://arxiv.org/abs/2108.12920
https://arxiv.org/abs/2009.05261
https://arxiv.org/abs/2109.00998
https://arxiv.org/abs/2005.01494


Problem positioning 

https://arxiv.org/abs/2106.16039

https://arxiv.org/abs/2109.00998

https://arxiv.org/abs/2109.00998
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Problem positioning 

• PAPR (peak to average power ratio)

• ACLR (adjacent channel leakage ratio)
𝐸!𝐸" 𝐸"

𝐸#

MOTIVATION FOR WAVEFORM LEARNING
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MOTIVATION FOR WAVEFORM LEARNING II

Conventional detector
Conventional 

waveform Channel

Transmitter Receiver

Neural detectorChannelLearned waveform

Could demodulate any
waveform

Enables
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SINGLE-CARRIER SETUP

𝑔!"(⋅)

Mapping Transmit
filtering

Multi-path Channel

ℎ 𝜏 = +
#$%

&'(

𝑎#𝛿(𝜏 − 𝜏#)

Receive
filtering

SamplingDetection

𝑩 𝒔

𝑟 𝑡 = 3𝑦 𝑧 𝑔!"∗ 𝑡 − 𝑧 𝑑𝑧

𝒓LLRs

𝒞
𝑔*"(⋅)

𝑥 𝑡 = +
+$%

,'(

𝑠+𝑔*" (𝑡 − 𝑛𝑇)

𝑦 𝑡 = 3ℎ 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏 + 𝑤 𝑡 𝑤 𝑡 is an uncorrelated Gaussian noise,

i.e, 𝔼 𝑤 𝑡 𝑤(𝑡 + 𝜏)∗ = 𝑁%𝛿(𝜏)
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SINGLE-CARRIER SETUP

Key idea:
Optimize the transmit and receive 

filters jointly with the constellation 
shaping, bit labelling, and detector

Mapping Transmit
filtering

Multi-path Channel

ℎ 𝜏 = +
#$%

&'(

𝑎#𝛿(𝜏 − 𝜏#)

Receive
filtering

Sampling𝑄𝜸(⋅ |𝒓)

𝑩 𝒔

𝑟 𝑡 = 3𝑦 𝑧 𝑔!",𝝍∗ 𝑡 − 𝑧 𝑑𝑧

𝒓LLRs

𝒞 𝑥 𝑡 = +
+$%

,'(

𝑠+𝑔*",𝝍 (𝑡 − 𝑛𝑇)

𝑦 𝑡 = 3ℎ 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏 + 𝑤 𝑡 𝑤 𝑡 is an uncorrelated Gaussian noise,

i.e, 𝔼 𝑤 𝑡 𝑤(𝑡 + 𝜏)∗ = 𝑁%𝛿(𝜏)

𝑔!",𝝍(⋅)

𝑔*",𝜽(⋅)



11

END-TO-END WAVEFORM LEARNING

Neural 
receiver
𝑄𝜸(𝐵",$|𝒓)

𝒓 LLRs

𝑟% = 𝑟 𝑚𝑇 = +
&

ℎ&𝑠%'& +𝑤%

ℎ& = +
()*

+',

(𝑔-.,𝜽 ∗ 𝑔0.,𝝍∗ ) 𝑙𝑇 − 𝜏( 𝑎(

𝔼 𝑤%𝑤%3&∗ = 𝑁*8𝑔0.,𝝍∗ 𝑡 𝑔0.,𝝍 𝑡 + 𝑙𝑇 𝑑𝑡

Discrete-time channel /
Trainable filters

Constraining the waveform is challenging:

• Average unit energy

• ACLR

• PAPR

Simulating the channel is challenging:

• Evaluation of the channel taps and noise correlation 

require integration.

Mapping
𝑩 𝒔

Trainable constellation  𝒞 Gradient flow
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IMPLEMENTATION OF TRANSMIT AND RECEIVE FILTERS
To accurately and efficiently implement trainable transmit and receive filters, we use the functions {𝑠𝑖𝑛𝑐 𝐷𝑓 − 𝑠 }4∈ℤ, which form a 
basis in the frequency domain for (practical) functions time-limited to − 7

8
, 7
8

.

E𝑔-.,𝜽 𝑓 = 𝐶(𝜽) +
4)'9

9

𝜃4sinc 𝐷𝑓 − 𝑠

E𝑔0.,𝝍 𝑓 = +
4)'9

9

𝜓4sinc 𝐷𝑓 − 𝑠

This leads to the time-domain expressions

𝑔-.,𝜽 𝑡 =
𝐶(𝜽)
𝐷 rect

𝑡
𝐷 +

4)'9

9

𝜃4𝑒
:8;4
7 <

𝑔0.,𝝍 𝑡 =
1
𝐷
rect

𝑡
𝐷

+
4)'9

9

𝜓4𝑒
:8;4
7 <

𝜽 =
𝜃9
⋮
𝜃'9

𝝍 =
𝜓9
⋮

𝜓'9

𝐶(𝜽) is a normalization constant that 
ensures the transmit filter has unit energy:

𝐶 𝜽 =
1

∫'7/8
7/8 𝑔-.,𝜽(𝑡)

8𝑑𝑡

This implementation of the transmit and receive filters enables 

exact and low complexity computation of 𝐶 𝜽 and of the 

• channel taps

• noise covariance

• ACLR

Details available in our paper.
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IMPLEMENTATION OF THE NEURAL RECEIVER
The neural receiver is implemented by a residual convolutional neural network

Residual block

Neural receiver for the AWGN channel
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LOSS FUNCTION

Our goal is to optimize the set of trainable parameters 𝜽,𝝍, 𝒞, 𝜸 to maximize the BMD rate

𝑅 𝜽,𝝍, 𝒞, 𝜸 =
1
𝑁+

")*

>',

+
$)*

?',

𝐼(𝐵",$; 𝒓|𝜽,𝝍, 𝒞) − 𝔼𝒓 DAB 𝑃 𝐵",$|𝒓 ||Q𝜸(𝐵",$|𝒓)

Mutual information between bit 
𝐵!,# and received samples 𝒓 True posterior distribution on 𝐵!,#

given 𝒓
Posterior distribution on 𝐵!,# given 
𝒓 approximated by the neural 

receiver

Achievable information rate assuming an 
ideal receiver

Rate loss due to mismatched receiver

By training on the BMD rate, optimization of the constellation geometry is performed while considering the labelling of each point. 
This leads to the joint optimization of the bit labelling and constellation geometry.
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LOSS FUNCTION

A practically useful observation is that the BMD rate 𝑅 is closely related to the binary cross-entropy:

ℒ 𝜽,𝝍, 𝒞, 𝜸 = 𝐾 − 𝑅 𝜽,𝝍, 𝒞, 𝜸

where

ℒ 𝜽,𝝍, 𝒞, 𝜸 ≔ −
1
𝑁+

")*

>',

+
$)*

?',

𝔼 log8 𝑄𝜸 𝐵",$|𝒓 |𝒞, 𝜽,𝝍 ≈ −
1
𝑀𝑁 +

%)*

D',

+
")*

>',

+
$)*

?',

log8 𝑄𝜸 𝐵",$
[%]|𝒓[%]

Maximizing 𝑅 is equivalent to minimizing ℒ

𝑅 𝜽,𝝍, 𝒞, 𝜸 is known to be an achievable rate for practical systems that rely on BICM and BMD detection [1,2]

[2] G. Böcherer, “Achievable Rates for Probabilistic Shaping,” preprint arXiv:1707.01134, 2017.

[3] F. Ait Aoudia and J. Hoydis, "End-to-end Learning for OFDM: From Neural Receivers to Pilotless Communication," in IEEE Transactions on Wireless Communications.
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PROBLEM STATEMENT

min
𝜽,𝒞,𝝍,𝜸

ℒ 𝜽,𝝍, 𝒞, 𝜸

subject to

8
'7/8

7/8
𝑔-.,𝜽(𝑡)

8𝑑𝑡 = 1

𝔼H∼𝒞 𝑐 8 = 1

𝔼
<~𝒰 'L8,

L
8

𝑚𝑎𝑥
𝑥 𝑡 8

𝑥 8
− 𝜖M , 0 = 0

ACLR 𝜽 ≤ 𝜖N

Mapping

Detection

𝑩 𝒔

𝒓LLRs

𝑟% = 𝑟 𝑚𝑇 = +
&

ℎ&𝑠%'& +𝑤%

ℎ& = +
()*

+',

(𝑔-.,𝜽 ∗ 𝑔0.,𝝍∗ ) 𝑙𝑇 − 𝜏( 𝑎(

𝔼 𝑤%𝑤%3&∗ = 𝑁*8𝑔0.,𝝍∗ 𝑡 𝑔0.,𝝍 𝑡 + 𝑙𝑇 𝑑𝑡

Discrete-time channel / Filtering

𝒞

𝜸

Training is performed using an augmented Lagrangian based approach.

Details available in our paper.
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RESULTS FOR AWGN CHANNEL

• Baseline:

• 16-QAM

• RRC filter with Blackman window

• Roll-off factors 𝛽 = 0.0, 0.25, 0.50, 0.75, 1.0

• E2E Approach:

• 𝜖M ∈ 0.1,0.2,0.3,0.4,0.5

• 𝜖N ∈ −50,−40,−30,−20 dB

• Observations:

• Accurate ACLR control possible!

• PAPR constraint incurs the strongest impact on rate
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RESULTS FOR AWGN CHANNEL II
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CAN WE BEAT OFDM WITH CYCLIC PREFIX?

• 3GPP 38.901 UMi line-of-sight (LoS) and non-line-of-sight (NLoS) channel models are considered

• Training and evaluation were performed on two separate datasets

• Baseline is Gray labelled 16QAM with OFDM waveform, with 166 subcarriers, 30 kHz subcarrier spacing, and a 5G NR pilot pattern



THE NEED FOR INTERDISCIPLINARY RESEARCH

§ Finding the right neural network architectures is key for:
§ Optimal performance
§ Low complexity and energy consumption

§ Unprecedented throughput & latency requirements

Fully convolutional residual networks Dilated separable convolutions



FUTURE CHALLENGES AND DIRECTIONS

§ Paradigm change in communication systems design
Is research mature enough & industry ready? 

§ Energy efficiency
Are fully learned solutions competitive?

§ Standardization
Learning outcome or procedures & signaling?

§ Trust & Reliability
How do we test & trouble-shoot fully learned systems?

§ New applications and use-cases:
THz frequencies
Joint communication & sensing




